Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Int J Pharm ; : 124129, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621615

RESUMO

Cationic liposomes specifically target monocytes in blood, rendering them promising drug-delivery tools for cancer immunotherapy, vaccines, and therapies for monocytic leukaemia. The mechanism behind this monocyte targeting ability is, however, not understood, but may involve plasma proteins adsorbed on the liposomal surfaces. To shed light on this, we investigated the biomolecular corona of three different types of PEGylated cationic liposomes, finding all of them to adsorb hyaluronan-associated proteins and proteoglycans upon incubation in human blood plasma. This prompted us to study the role of the TLR4 co-receptors CD44 and CD14, both involved in signalling and uptake pathways of proteoglycans and glycosaminoglycans. We found that separate inhibition of each of these receptors hampered the monocyte uptake of the liposomes in whole human blood. Based on clues from the biomolecular corona, we have thus identified two receptors involved in the targeting and uptake of cationic liposomes in monocytes, in turn suggesting that certain proteoglycans and glycosaminoglycans may serve as monocyte-targeting opsonins. This mechanistic knowledge may pave the way for rational design of future monocyte-targeting drug-delivery platforms.

2.
Lasers Surg Med ; 56(3): 239-248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311811

RESUMO

BACKGROUND: Systemically delivered hedgehog inhibitors including vismodegib and sonidegib are widely used to treat basal cell carcinomas (BCCs). Ablative fractional laser (AFL)-assisted topical delivery of vismodegib has been demonstrated in preclinical studies. The aim of this explorative clinical study was to evaluate intratumoral vismodegib concentrations and effect on hedgehog pathway gene expression following AFL-assisted topical vismodegib delivery to BCCs. METHODS: In an open-label clinical trial, 16 nodular BCCs (in n = 9 patients) received one application of CO2 -AFL (40 mJ/microbeam, 10% density) followed by topical vismodegib emulsion. After 3-4 days, vismodegib concentrations in tumor biopsies (n = 15) and plasma were analyzed and compared with samples from patients receiving oral treatment (n = 3). GLI1, GLI2, PTCH1, and PTCH2 expression was determined by quantitative polymerase chain reaction (n = 7) and GLI1 additionally by in situ hybridization (n = 3). RESULTS: Following AFL-assisted topical administration, vismodegib was detected in 14/15 BCCs and reached a median concentration of 6.2 µmol/L, which compared to concentrations in BCC tissue from patients receiving oral vismodegib (9.5 µmol/L, n = 3, p = 0.8588). Topical vismodegib reduced intratumoral GLI1 expression by 51%, GLI2 by 55%, PTCH1 and PTCH2 each by 73% (p ≤ 0.0304) regardless of vismodegib concentrations (p ≥ 0.3164). In situ hybridization demonstrated that GLI1 expression was restricted to tumor tissue and downregulated in response to vismodegib exposure. CONCLUSION: A single AFL-assisted topical application of vismodegib resulted in clinically relevant intratumoral drug concentrations and significant reductions in hedgehog pathway gene expressions.


Assuntos
Anilidas , Antineoplásicos , Carcinoma Basocelular , Lasers de Gás , Piridinas , Neoplasias Cutâneas , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Antineoplásicos/efeitos adversos , Expressão Gênica
3.
Lasers Surg Med ; 56(3): 270-278, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409449

RESUMO

OBJECTIVES: Ablative fractional laser (AFL) treatment is a well-established method for reducing signs of skin photoaging. However, the biological mechanisms underlying AFL-induced healing responses and skin rejuvenation remain largely unknown. It is known that macrophages play an important role in orchestrating healing, normalization, and remodeling processes in skin. Macrophage phenotypes are characterized by inflammatory markers, including arginase-1 (Arg1), major histocompatibility class II molecules (MHC II), and CD206. This study aims to explore AFL's effect on macrophage phenotype by evaluating changes in inflammatory markers and the potential concurrent accumulation of Arg1 in the skin. METHODS: Mice (n = 9) received a single AFL treatment on the left side of the back skin (100 mJ/microbeam, 5% density) while the right side of the back remained untreated as control. Treated and untreated skin from each mouse were collected Day 5 posttreatment for flow cytometry and histology analysis. Flow cytometry evaluated the immune infiltration of macrophages and the expression of macrophage inflammatory markers (Arg1, MHC II, and CD206). In addition, Arg1 presence in the skin was evaluated through antibody staining of histology samples and quantification was performed using QuPath image analysis software. RESULTS: Following AFL, the number of macrophages increased 11-fold (p = 0.0053). Phenotype analysis of AFL-treated skin revealed an increase in the percentage of macrophages positive for Arg1 (p < 0.0001) and a decrease in the percentage of macrophages positive for MHC II (p < 0.0001) compared to untreated skin. No significant differences were observed in percentage of CD206-positive macrophages (p = 0.8952). Visualization of AFL-treated skin demonstrated a distinct pattern of Arg1 accumulation that correlated with the microscopic treatment zones (MTZ). Quantification of the percentage of Arg1-positive area in epidermis and dermis showed a significant increase from 3.5% ± 1.2% to 5.2% ± 1.7 (p = 0.0232) and an increase from 2.2% ± 1.2% to 9.6% ± 3.3 (p < 0.0001) in whole skin samples. CONCLUSION: AFL treatment polarizes macrophages toward a wound healing phenotype and induces Arg1 accumulation in the MTZ. We propose that the polarized wound healing macrophages are a major source for the increased Arg1 levels observed in the skin following treatment.


Assuntos
Dióxido de Carbono , Pele , Camundongos , Animais , Dióxido de Carbono/metabolismo , Cicatrização , Fenótipo , Macrófagos/metabolismo , Lasers
4.
Int Immunopharmacol ; 129: 111643, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340420

RESUMO

Particle-based systems have become a state-of-the-art method for in vitro expanding cytotoxic T cells by tailoring their surface with activating molecules. However, commonly used methods utilize facile carbodiimide chemistry leading to uncontrolled orientation of the immobilized antibodies on the particle surface that can lead to poor binding to target cells. To address this, selective coupling strategies utilizing regioselective chemical groups such as disulfide bridges offer a simple approach. In this work we present a set of methods to investigate the effect of polymeric nanoparticles, conjugated with either regioselective- or randomly-immobilized antiCD3 and antiCD28 antibodies, on the activation potential, expansion and expression of activation markers in T cells. We show that nanoparticles with well-oriented monovalent antibodies conjugated via maleimide require fewer ligands on the surface to efficiently expand T cells compared to bivalent antibodies randomly-immobilized via carbodiimide conjugation. Analysis of the T cell expression markers reveal that the T cell phenotype can be fine-tuned by adjusting the surface density of well-oriented antibodies, while randomly immobilized antibodies showed no differences despite their ligand density. Both conjugation techniques induced cytotoxic T cells, evidenced by analyzing their Granzyme B secretion. Furthermore, antibody orientation affects the immunological synapse and T cell activation by changing the calcium influx profile upon activation. Nanoparticles with well-oriented antibodies showed lower calcium influx compared to their bivalent randomly-immobilized counterparts. These results highlight the importance of controlling the antibody density and orientation on the nanoparticle surface via controlled coupling chemistries, helping to develop improved particle-based expansion protocols to enhance T cell therapies.


Assuntos
Anticorpos Imobilizados , Nanopartículas , Humanos , Cálcio , Anticorpos , Linfócitos T CD8-Positivos , Complexo CD3 , Nanopartículas/química , Carbodi-Imidas
5.
Biotechnol J ; 19(1): e2300339, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178719

RESUMO

Cell-mediated drug delivery by conjugating nanomedicine to the surface of living cells is a promising strategy for enhancing the efficacy of both drug delivery and cell therapy. It exploits the tissue homing properties of the specific cell types to overcome in vivo barriers and forms a drug depot by directly putting the therapeutic payload in target cells. An important concern of developing this system is the method to conjugate nanoparticles on cells. Herein, we developed a bioorthogonal T cell conjugation strategy using SPAAC click chemistry, which allows controllable and highly efficient conjugation without affecting the viability and functions of the cytotoxic T lymphocytes. Azide groups were incorporated on the surface of T cells through metabolic glycoengineering, followed by reacting with dibenzylcyclooctyne (DBCO) modified lipid nanoparticles (LNPs). LNPs can be conjugated to T cells, allowing for the loading of different drug molecules on the cells. The metabolic engineering and click reaction approach provides a simple and versatile strategy to conjugate NPs to living cells and enable the development of sophisticated therapeutic cell products.


Assuntos
Química Click , Nanopartículas , Química Click/métodos , Nanopartículas/química , Lipossomos , Sistemas de Liberação de Medicamentos
6.
FASEB Bioadv ; 5(9): 355-366, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674540

RESUMO

Extracellular vesicle (EV) secretion rate is stimulated by hypoxia that causes increased reactive oxygen species (ROS) production by the mitochondrial electron transport chain (ETC) and hypoxia-induced factor (HIF)-1 signaling; however, their contribution to the increased EV secretion rate is unknown. We found that the EV marker secretion rate in our EV reporter cell line CD9truc-EGFP was unaffected by the HIF-1α stabilizer roxadustat; yet, ETC stimulation by dichloroacetic acid (DCA) significantly increased EV secretion. The DCA-induced EV secretion was blocked by the antioxidant TEMPO and rotenone, an inhibitor of the ETC's Complex I. Under hypoxic conditions, the limited oxygen reduction impedes the ETC's Complex III. To mimic this, we inhibited Complex III with antimycin A, which increased ROS-dependent EV secretion. The electron transport between Complex I and III is accomplished by coenzyme Q created by the mevalonate pathway and tyrosine metabolites. Blocking an early step in the mevalonate pathway using pitavastatin augmented the DCA-induced EV secretion, and 4-nitrobenzoate-an inhibitor of the condensation of the mevalonate pathway with tyrosine metabolites-increased ROS-dependent EV secretion. Our findings indicate that hypoxia-mimetics targeting the ETC modify EV secretion and that ROS produced by the ETC is a potent stimulus for EV secretion.

7.
Mol Ther Methods Clin Dev ; 29: 450-459, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37251983

RESUMO

Following the recent approval of both siRNA- and mRNA-based therapeutics, nucleic acid therapies are considered a game changer in medicine. Their envisioned widespread use for many therapeutic applications with an array of cellular target sites means that various administration routes will be employed. Concerns exist regarding adverse reactions against the lipid nanoparticles (LNPs) used for mRNA delivery, as PEG coatings on nanoparticles can induce severe antibody-mediated immune reactions, potentially being boosted by the inherently immunogenic nucleic acid cargo. While exhaustive information is available on how physicochemical features of nanoparticles affects immunogenicity, it remains unexplored how the fundamental choice of administration route regulates anti-particle immunity. Here, we directly compared antibody generation against PEGylated mRNA-carrying LNPs administered by the intravenous, intramuscular, or subcutaneous route, using a novel sophisticated assay capable of measuring antibody binding to authentic LNP surfaces with single-particle resolution. Intramuscular injections in mice were found to generate overall low and dose-independent levels of anti-LNP antibodies, while both intravenous and subcutaneous LNP injections generated substantial and highly dose-dependent levels. These findings demonstrate that before LNP-based mRNA medicines can be safely applied to new therapeutic applications, it will be crucial to carefully consider the choice of administration route.

8.
Mol Pharm ; 20(7): 3356-3366, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36952227

RESUMO

Despite the success of mRNA-based vaccines against infectious diseases (including COVID-19), safety concerns have been raised relating to the lipid nanoparticles (LNPs) used to deliver the mRNA cargo. Antibodies against the polyethylene glycol (PEG) coating on these non-viral vectors are present in the general population and can in some instances induce allergic reactions. Furthermore, treatment with PEGylated therapeutics may increase the plasma concentration of such anti-PEG antibodies. The widespread use of PEGylated nanoparticles for mRNA vaccines concerns researchers and clinicians about a potential rise in future cases of allergic reactions against mRNA vaccines and cross-reactions with other PEGylated therapeutics. To determine if vaccination with Comirnaty increased the plasma concentration of antibodies against LNPs, we investigated the blood plasma concentration of anti-LNP antibodies in healthy individuals before and after vaccination with the mRNA-based COVID-19 vaccine Comirnaty (BNT162b2). Blood samples were acquired from 21 healthy adults before vaccination, 3-4 weeks after the first vaccination dose but before the second dose, and 2-6 months after the second (booster) dose. The blood plasma concentration of antibodies recognizing the LNPs was analyzed using a microscopy-based assay capable of measuring antibody-binding to individual authentic LNPs. No significant increase in anti-LNP antibodies was observed after two doses of Comirnaty. The LNPs used for intramuscular delivery of mRNA in the vaccine against COVID-19, Comirnaty, do, therefore, not seem to induce the generation of anti-vector antibodies.


Assuntos
COVID-19 , Hipersensibilidade , Nanopartículas , Adulto , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas de mRNA , Vacinação , Anticorpos
9.
Int J Nanomedicine ; 18: 829-841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824412

RESUMO

Introduction: Traditional cancer treatments, such as chemotherapy, are often incapable of achieving complete responses as standalone therapies. Hence, current treatment strategies typically rely on a combination of several approaches. Nanoparticle-based photothermal therapy (PTT) is a technique used to kill cancer cells through localized, severe hyperthermia that has shown promise as an add-on treatment to multiple cancer therapies. Here, we evaluated whether the combination of gold nanoshell (NS)-based PTT and liposomal doxorubicin could improve outcome in a mouse model of colorectal cancer. Methods: First, NS-based PTT was performed on tumor-bearing mice. Radiolabeled liposomes were then injected at different timepoints to follow their accumulation in the tumor and determine the ideal injection time after PTT. In addition, fluorescent liposomes were used to observe the liposomal distribution in the tumor after PTT. Finally, we combined PTT and doxorubicin-loaded liposomes and studied the effect of the treatment strategy on the mice by following tumor growth and survival. Results: PTT significantly improved liposomal accumulation in the tumor, but only when the liposomes were injected immediately after the therapy. The liposomes accumulated mostly in regions adjacent to the ablated areas. When PTT was combined with liposomal doxorubicin, the mice experienced a slowdown in tumor growth and an improvement in survival. Conclusion: According to our preclinical study, NS-based PTT seems promising as an add-on treatment for liposomal chemotherapy and potentially other systemic therapies, and could be relevant for future application in a clinical setting.


Assuntos
Neoplasias Colorretais , Hipertermia Induzida , Nanoconchas , Camundongos , Animais , Lipossomos , Terapia Fototérmica , Terapia Neoadjuvante , Ouro , Doxorrubicina/farmacologia , Fototerapia , Modelos Animais de Doenças , Neoplasias Colorretais/terapia , Linhagem Celular Tumoral
10.
ACS Appl Mater Interfaces ; 15(2): 2564-2577, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598781

RESUMO

For three-dimensional (3D) bioprinting to fulfill its promise and enable the automated fabrication of complex tissue-mimicking constructs, there is a need for developing bioinks that are not only printable and biocompatible but also have integrated cell-instructive properties. Toward this goal, we here present a scalable technique for generating nanofiber 3D printing inks with unique tissue-guiding capabilities. Our core methodology relies on tailoring the size and dispersibility of cellulose fibrils through a solvent-controlled partial carboxymethylation. This way, we generate partially negatively charged cellulose nanofibers with diameters of ∼250 nm and lengths spanning tens to hundreds of microns. In this range, the fibers structurally match the size and dimensions of natural collagen fibers making them sufficiently large to orient cells. Yet, they are simultaneously sufficiently thin to be optically transparent. By adjusting fiber concentration, 3D printing inks with excellent shear-thinning properties can be established. In addition, as the fibers are readily dispersible, composite inks with both carbohydrates and extracellular matrix (ECM)-derived proteins can easily be generated. We apply such composite inks for 3D printing cell-laden and cross-linkable structures, as well as tissue-guiding gel substrates. Interestingly, we find that the spatial organization of engineered tissues can be defined by the shear-induced alignment of fibers during the printing procedure. Specifically, we show how myotubes derived from human and murine skeletal myoblasts can be programmed into linear and complex nonlinear architectures on soft printed substrates with intermediate fiber contents. Our nanofibrillated cellulose inks can thus serve as a simple and scalable tool for engineering anisotropic human muscle tissues that mimic native structure and function.


Assuntos
Bioimpressão , Nanofibras , Animais , Humanos , Camundongos , Nanofibras/química , Celulose/química , Engenharia Tecidual/métodos , Impressão Tridimensional , Bioimpressão/métodos , Tecidos Suporte/química , Hidrogéis/química , Tinta
11.
Front Bioeng Biotechnol ; 10: 965200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159696

RESUMO

Unsuccessful clinical translation of orally delivered biological drugs remains a challenge in pharmaceutical development and has been linked to insufficient mechanistic understanding of intestinal drug transport. Live cell imaging could provide such mechanistic insights by directly tracking drug transport across intestinal barriers at subcellular resolution, however traditional intestinal in vitro models are not compatible with the necessary live cell imaging modalities. Here, we employed a novel microfluidic platform to develop an in vitro intestinal epithelial barrier compatible with advanced widefield- and confocal microscopy. We established a quantitative, multiplexed and high-temporal resolution imaging assay for investigating the cellular uptake and cross-barrier transport of biologics while simultaneously monitoring barrier integrity. As a proof-of-principle, we use the generic model to monitor the transport of co-administrated cell penetrating peptide (TAT) and insulin. We show that while TAT displayed a concentration dependent difference in its transport mechanism and efficiency, insulin displayed cellular internalization, but was restricted from transport across the barrier. This illustrates how such a sophisticated imaging based barrier model can facilitate mechanistic studies of drug transport across intestinal barriers and aid in vivo and clinical translation in drug development.

12.
ACS Nano ; 16(7): 10918-10930, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35838499

RESUMO

Whereas adoptive T cell therapy has been extensively studied for cancer treatment, the response is still limited primarily due to immune dysfunction related to poor cell engraftment, tumor infiltration and engagement, and lack of a target. In addition, the modification of therapeutic T cells often suffers from being complex and expensive. Here, we present a strategy to load T cells with SHP099, an allosteric SHP2 inhibitor, to enhance the therapeutic efficacy of the T cells. Remote-loading of SHP099 into lipid nanoparticles decorated with triarginine motifs resulted in nanocrystal formation of SHP099 inside the lipid vesicles and allowed high loading efficiency and prolonged retention of SHP099 nanocrystals within T cells. Cell-loaded SHP099 enabled sustained inhibition of the PD-1/PD-L1 signaling and increased cytolytic activity of the T cells. We show in a mouse model that tumor-homing T cells can circulate with the cargos, improving their tumor accumulation compared to systemically administered lipid nanoparticles. On an established solid tumor model, adoptively transferred SHP099 loaded T cells induced complete tumor eradication and durable immune memory against tumor rechallenging on all treated mice by effectively inhibiting the PD-1/PD-L1 checkpoint signal. We demonstrate that the combination of T cell therapy with SHP2 inhibition is a promising therapeutic strategy, and the lipid nanocrystal platform could be generalized as a promising approach for T cell loading of immunomodulatory drugs.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Antígeno B7-H1 , Linfócitos T/patologia , Receptor de Morte Celular Programada 1/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Terapia Baseada em Transplante de Células e Tecidos , Lipídeos , Linhagem Celular Tumoral
13.
Cell Mol Life Sci ; 79(6): 336, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657417

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a rare, progressive, neurodegenerative disorder presenting glia pathology. Still, disease etiology and pathophysiology are unknown, but neuro-inflammation and vascular disruption may be contributing factors to the disease progression. Here, we performed an ex vivo deep proteome profiling of the prefrontal cortex of MSA patients to reveal disease-relevant molecular neuropathological processes. Observations were validated in plasma and cerebrospinal fluid (CSF) of novel cross-sectional patient cohorts. METHODS: Brains from 45 MSA patients and 30 normal controls (CTRLs) were included. Brain samples were homogenized and trypsinized for peptide formation and analyzed by high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Results were supplemented by western blotting, immuno-capture, tissue clearing and 3D imaging, immunohistochemistry and immunofluorescence. Subsequent measurements of glial fibrillary acid protein (GFAP) and neuro-filament light chain (NFL) levels were performed by immunoblotting in plasma of 20 MSA patients and 20 CTRLs. Finally, we performed a proteome profiling of 144 CSF samples from MSA and CTRLs, as well as other parkinsonian disorders. Data were analyzed using relevant parametric and non-parametric two-sample tests or linear regression tests followed by post hoc tests corrected for multiple testing. Additionally, high-throughput bioinformatic analyses were applied. RESULTS: We quantified more than 4,000 proteins across samples and identified 49 differentially expressed proteins with significantly different abundances in MSA patients compared with CTRLs. Pathway analyses showed enrichment of processes related to fibrinolysis and complement cascade activation. Increased fibrinogen subunit ß (FGB) protein levels were further verified, and we identified an enriched recognition of FGB by IgGs as well as intra-parenchymal accumulation around blood vessels. We corroborated blood-brain barrier leakage by a significant increase in GFAP and NFL plasma levels in MSA patients that correlated to disease severity and/or duration. Proteome profiling of CSF samples acquired during the disease course, confirmed increased total fibrinogen levels and immune-related components in the soluble fraction of MSA patients. This was also true for the other atypical parkinsonian disorders, dementia with Lewy bodies and progressive supra-nuclear palsy, but not for Parkinson's disease patients. CONCLUSION: Our results implicate activation of the fibrinolytic cascade and immune system in the brain as contributing factors in MSA associated with a more severe disease course.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Encéfalo/metabolismo , Cromatografia Líquida , Estudos Transversais , Progressão da Doença , Fibrinogênio/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Proteoma/metabolismo , Espectrometria de Massas em Tandem
14.
J Control Release ; 347: 282-307, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513210

RESUMO

Protein and peptide biopharmaceuticals have had a major impact on the treatment of a number of diseases. There is a growing interest in overcoming some of the challenges associated with biopharmaceuticals, such as rapid degradation in physiological fluid, using nanocarrier delivery systems. Biopharmaceutical nanoclusters (BNCs) where the therapeutic protein or peptide is clustered together to form the main constituent of the nanocarrier system have the potential to mimic the benefits of more established nanocarriers (e.g., liposomal and polymeric systems) whilst eliminating the issue of low drug loading and potential side effects from additives. These benefits would include enhanced stability, improved absorption, and increased biopharmaceutical activity. However, the successful development of BNCs is challenged by the physicochemical complexity of the protein and peptide constituents as well as the dynamics of clustering. Here, we present and discuss common methodologies for the synthesis of therapeutic protein and peptide nanoclusters, as well as review the current status of this emerging field.


Assuntos
Produtos Biológicos , Nanopartículas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/uso terapêutico , Proteínas/uso terapêutico
15.
Sci Adv ; 8(17): eabi8075, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35476449

RESUMO

Immune-activating cytokines such as interleukin-12 (IL-12) hold strong potential for cancer immunotherapy but have been limited by high systemic toxicities. We describe here an approach to safely harness cytokine biology for adoptive cell therapy through uniform and dose-controlled tethering onto the surface of the adoptively transferred cells. Tumor-specific T cells tethered with IL-12 showed superior antitumor efficacy across multiple cell therapy models compared to conventional systemic IL-12 coadministration. Mechanistically, the IL-12-tethered T cells supported a strong safety profile by driving interferon-γ production and adoptively transferred T cell activity preferentially in the tumor. Immune profiling revealed that the tethered IL-12 reshaped the suppressive tumor immune microenvironment, including triggering a pronounced repolarization of monocytic myeloid-derived suppressor cells into activated, inflammatory effector cells that further supported antitumor activity. This tethering approach thus holds strong promise for harnessing and directing potent immunomodulatory cytokines for cell therapies while limiting systemic toxicities.


Assuntos
Interleucina-12 , Neoplasias , Terapia Baseada em Transplante de Células e Tecidos , Citocinas , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Microambiente Tumoral
16.
Acta Biomater ; 144: 96-108, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314364

RESUMO

Stimulation of monocytes with immunomodulating agents can harness the immune system to treat a long range of diseases, including cancers, infections and autoimmune diseases. To this end we aimed to develop a monocyte-targeting delivery platform based on cationic liposomes, which can be utilized to deliver immunomodulators and thus induce monocyte-mediated immune responses while avoiding off-target side-effects. The cationic liposome design is based on functionalizing the liposomal membrane with a cholesterol-anchored tri-arginine peptide (TriArg). We demonstrate that TriArg liposomes can target monocytes with high specificity in both human and murine blood and that this targeting is dependent on the content of TriArg in the liposomal membrane. In addition, we show that the mechanism of selective monocyte targeting involves the CD14 co-receptor, and selectivity is compromised when the TriArg content is increased, resulting in complement-mediated off-target uptake in granulocytes. The presented mechanistic findings of uptake by peripheral blood leukocytes may guide the design of future drug delivery systems utilized for immunotherapy. STATEMENT OF SIGNIFICANCE: Monocytes are attractive targets for immunotherapies of cancers, infections and autoimmune diseases. Specific delivery of immunostimulatory drugs to monocytes is typically achieved using ligand-targeted drug delivery systems, but a simpler approach is to target monocytes using cationic liposomes. To achieve this, however, a deep understanding of the mechanisms governing the interactions of cationic liposomes with monocytes and other leukocytes is required. We here investigate these interactions using liposomes incorporating a cationic arginine-rich lipopeptide. We demonstrate that monocyte targeting can be achieved by fine-tuning the lipopeptide content in the liposomes. Additionally, we reveal that the CD14 receptor is involved in the targeting process, whereas the complement system is not. These mechanistic findings are critical for future design of monocyte-targeting liposomal therapies.


Assuntos
Doenças Autoimunes , Neoplasias , Animais , Arginina/farmacologia , Cátions , Humanos , Lipopeptídeos/farmacologia , Receptores de Lipopolissacarídeos , Lipossomos/química , Camundongos , Monócitos
17.
Small ; 18(14): e2106529, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187804

RESUMO

Coating nanoparticles with poly(ethylene glycol) (PEG) is widely used to achieve long-circulating properties after infusion. While PEG reduces binding of opsonins to the particle surface, immunogenic anti-PEG side-effects show that PEGylated nanoparticles are not truly "stealth" to surface active proteins. A major obstacle for understanding the complex interplay between opsonins and nanoparticles is the averaging effects of the bulk assays that are typically applied to study protein adsorption to nanoparticles. Here, a microscopy-based method for directly quantifying opsonization at the single nanoparticle level is presented. Various surface coatings are investigated on liposomes, including PEG, and show that opsonization by both antibodies and complement C3b is highly dependent on the surface chemistry. It is further demonstrated that this opsonization is heterogeneous, with opsonized and non-opsonized liposomes co-existing in the same ensemble. Surface coatings modify the percentage of opsonized liposomes and/or opsonin surface density on the liposomes, with strikingly different patterns for antibodies and complement. Thus, this assay provides mechanistic details about opsonization at the single nanoparticle level previously inaccessible to established bulk assays.


Assuntos
Lipossomos , Proteínas Opsonizantes , Anticorpos , Proteínas do Sistema Complemento/metabolismo , Lipossomos/química , Proteínas Opsonizantes/metabolismo , Opsonização , Polietilenoglicóis/química
18.
J Control Release ; 342: 337-344, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973307

RESUMO

Systemic administration of toll-like receptor (TLR) agonists have demonstrated impressive preclinical results as an anti-cancer therapy due to their potent innate immune-stimulatory properties. The clinical advancement has, however, been hindered by severe adverse effects due to systemic activation of the immune system. Liposomal drug delivery systems may modify biodistribution, cellular uptake, and extend blood circulation, and thus, potentially enable systemic administration of TLR agonists at therapeutic doses. In this study, we investigated potential barriers for the administration of TLR agonists formulated in polyethylene glycosylated (PEGylated) liposomes with regards to liposome formulation, TLR agonist, administration route, administration schedule, biodistribution, blood clearance, and anti-PEG antibodies. We found that administration of TLR agonists formulated in PEGylated liposomes led to high anti-PEG antibody titers, which upon multiple intravenous administrations, resulted in accelerated blood clearance and acute hypersensitivity reactions. The latter was found to be associated with anti-PEG IgG antibody and not anti-PEG IgM antibody opsonization. This study highlights the need to carefully design and evaluate nanoparticle delivery systems for immunotherapy as anti-nanoparticle immune responses may challenge the therapeutic application.


Assuntos
Lipossomos , Nanopartículas , Imunoglobulina M , Polietilenoglicóis , Distribuição Tecidual
19.
FEBS J ; 289(4): 1062-1079, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34626084

RESUMO

Brain homeostasis depends on the existence of the blood-brain barrier (BBB). Despite decades of research, the factors and signalling pathways for modulating and maintaining BBB integrity are not fully elucidated. Here, we characterise the expression and function of the multifunctional receptor, sortilin, in the cells of the BBB, in vivo and in vitro. We show that sortilin acts as an important regulatory protein of the BBB's tightness. In rats lacking sortilin, the BBB was leaky, which correlated well with relocated distribution of the localisation of zonula occludens-1, VE-cadherin and ß-catenin junctional proteins. Furthermore, the absence of sortilin in brain endothelial cells resulted in decreased phosphorylation of Akt signalling protein and increased the level of phospho-ERK1/2. As a putative result of MAPK/ERK pathway activity, the junctions between the brain endothelial cells were disintegrated and the integrity of the BBB became compromised. The identified barrier differences between wild-type and Sort1-/- brain endothelial cells can pave the way for a better understanding of sortilin's role in the healthy and diseased BBB.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Barreira Hematoencefálica/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Animais , Células Cultivadas , Ratos , Ratos Sprague-Dawley
20.
Biochim Biophys Acta Biomembr ; 1864(2): 183820, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813768

RESUMO

Membrane-active peptides (MAPs) have several potential therapeutic uses, including as antimicrobial drugs. Many traditional methods used to evaluate the membrane interactions of MAPs have limited applicability. Low-throughput methods, such as microscopy, provide detailed information but often rely on fluorophore-labeled MAPs, and high-throughput assays, such as the calcein release assay, cannot assess the mechanism behind the disruption of vesicular-based lipid membranes. Here we present a flow cytometric assay that provides detailed information about the peptide-lipid membrane interactions on single artificial lipid vesicles while being high-throughput (1000-2000 vesicles/s) and based on label-free MAPs. We synthesized and investigated six MAPs with different modes of action to evaluate the versatility of the assay. The assay is based on the flow cytometric readouts from artificial lipid vesicles, including the fluorescence from membrane-anchored and core-encapsulated fluorophores, and the vesicle concentration. From these parameters, we were able to distinguish between MAPs that induce vesicle solubilization, permeation (pores/membrane distortion), and aggregation or fusion. Our flow cytometry findings have been verified by traditional methods, including the calcein release assay, dynamic light scattering, and fluorescence microscopy on giant unilamellar vesicles. We envision that the presented flow cytometric assay can be used for various types of peptide-lipid membrane studies, e.g. to identify new antibiotics. Moreover, the assay can easily be expanded to derive additional valuable information.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Citometria de Fluxo/métodos , Fluoresceínas/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Lipossomas Unilamelares/metabolismo , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...